Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
JMIR Form Res ; 7: e39409, 2023 Apr 21.
Article in English | MEDLINE | ID: covidwho-2302523

ABSTRACT

BACKGROUND: In the wake of the SARS-CoV-2 pandemic, scientists have scrambled to collect and analyze SARS-CoV-2 genomic data to inform public health responses to COVID-19 in real time. Open source phylogenetic and data visualization platforms for monitoring SARS-CoV-2 genomic epidemiology have rapidly gained popularity for their ability to illuminate spatial-temporal transmission patterns worldwide. However, the utility of such tools to inform public health decision-making for COVID-19 in real time remains to be explored. OBJECTIVE: The aim of this study is to convene experts in public health, infectious diseases, virology, and bioinformatics-many of whom were actively engaged in the COVID-19 response-to discuss and report on the application of phylodynamic tools to inform pandemic responses. METHODS: In total, 4 focus groups (FGs) occurred between June 2020 and June 2021, covering both the pre- and postvariant strain emergence and vaccination eras of the ongoing COVID-19 crisis. Participants included national and international academic and government researchers, clinicians, public health practitioners, and other stakeholders recruited through purposive and convenience sampling by the study team. Open-ended questions were developed to prompt discussion. FGs I and II concentrated on phylodynamics for the public health practitioner, while FGs III and IV discussed the methodological nuances of phylodynamic inference. Two FGs per topic area to increase data saturation. An iterative, thematic qualitative framework was used for data analysis. RESULTS: We invited 41 experts to the FGs, and 23 (56%) agreed to participate. Across all the FG sessions, 15 (65%) of the participants were female, 17 (74%) were White, and 5 (22%) were Black. Participants were described as molecular epidemiologists (MEs; n=9, 39%), clinician-researchers (n=3, 13%), infectious disease experts (IDs; n=4, 17%), and public health professionals at the local (PHs; n=4, 17%), state (n=2, 9%), and federal (n=1, 4%) levels. They represented multiple countries in Europe, the United States, and the Caribbean. Nine major themes arose from the discussions: (1) translational/implementation science, (2) precision public health, (3) fundamental unknowns, (4) proper scientific communication, (5) methods of epidemiological investigation, (6) sampling bias, (7) interoperability standards, (8) academic/public health partnerships, and (9) resources. Collectively, participants felt that successful uptake of phylodynamic tools to inform the public health response relies on the strength of academic and public health partnerships. They called for interoperability standards in sequence data sharing, urged careful reporting to prevent misinterpretations, imagined that public health responses could be tailored to specific variants, and cited resource issues that would need to be addressed by policy makers in future outbreaks. CONCLUSIONS: This study is the first to detail the viewpoints of public health practitioners and molecular epidemiology experts on the use of viral genomic data to inform the response to the COVID-19 pandemic. The data gathered during this study provide important information from experts to help streamline the functionality and use of phylodynamic tools for pandemic responses.

2.
Lancet Reg Health West Pac ; 10: 100130, 2021 May.
Article in English | MEDLINE | ID: covidwho-2254259

ABSTRACT

BACKGROUND: Viral genomic surveillance is vital for understanding the transmission of COVID-19. In Hong Kong, breakthrough outbreaks have occurred in July (third wave) and November (fourth wave) 2020. We used whole viral genome analysis to study the characteristics of these waves. METHODS: We analyzed 509 SARS-CoV-2 genomes collected from Hong Kong patients between 22nd January and 29th November, 2020. Phylogenetic and phylodynamic analyses were performed, and were interpreted with epidemiological information. FINDINGS: During the third and fourth waves, diverse SARS-CoV-2 genomes were identified among imported infections. Conversely, local infections were dominated by a single lineage during each wave, with 96.6% (259/268) in the third wave and 100% (73/73) in the fourth wave belonging to B.1.1.63 and B.1.36.27 lineages, respectively. While B.1.1.63 lineage was imported 2 weeks before the beginning of the third wave, B.1.36.27 lineage has circulated in Hong Kong for 2 months prior to the fourth wave. During the fourth wave, 50.7% (37/73) of local infections in November was identical to the viral genome from an imported case in September. Within B.1.1.63 or B.1.36.27 lineage in our cohort, the most common non-synonymous mutations occurred at the helicase (nsp13) gene. INTERPRETATION: Although stringent measures have prevented most imported cases from spreading in Hong Kong, a single lineage with low-level local transmission in October and early November was responsible for the fourth wave. A superspreading event or lower temperature in November may have facilitated the spread of the B.1.36.27 lineage.

3.
Open Forum Infect Dis ; 9(7): ofac268, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1967905

ABSTRACT

Background: Using a combination of data from routine surveillance, genomic sequencing, and phylogeographic analysis, we tracked the spread and introduction events of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants focusing on a large university community. Methods: Here, we sequenced and analyzed 677 high-quality SARS-CoV-2 genomes from positive RNA samples collected from Purdue University students, faculty, and staff who tested positive for the virus between January 2021 and May 2021, comprising an average of 32% of weekly cases across the time frame. Results: Our analysis of circulating SARS-CoV-2 variants over time revealed periods when variants of concern (VOC) Alpha (B.1.1.7) and Iota (B.1.526) reached rapid dominance and documented that VOC Gamma (P.1) was increasing in frequency as campus surveillance was ending. Phylodynamic analysis of Gamma genomes from campus alongside a subsampling of >20 000 previously published P.1 genomes revealed 10 independent introductions of this variant into the Purdue community, predominantly from elsewhere in the United States, with introductions from within the state of Indiana and from Illinois, and possibly Washington and New York, suggesting a degree of domestic spread. Conclusions: We conclude that a robust and sustained active and passive surveillance program coupled with genomic sequencing during a pandemic offers important insights into the dynamics of pathogen arrival and spread in a campus community and can help guide mitigation measures.

4.
Mol Biol Evol ; 39(8)2022 08 03.
Article in English | MEDLINE | ID: covidwho-1948384

ABSTRACT

Phylodynamic methods reveal the spatial and temporal dynamics of viral geographic spread, and have featured prominently in studies of the COVID-19 pandemic. Virtually all such studies are based on phylodynamic models that assume-despite direct and compelling evidence to the contrary-that rates of viral geographic dispersal are constant through time. Here, we: (1) extend phylodynamic models to allow both the average and relative rates of viral dispersal to vary independently between pre-specified time intervals; (2) implement methods to infer the number and timing of viral dispersal events between areas; and (3) develop statistics to assess the absolute fit of discrete-geographic phylodynamic models to empirical datasets. We first validate our new methods using simulations, and then apply them to a SARS-CoV-2 dataset from the early phase of the COVID-19 pandemic. We show that: (1) under simulation, failure to accommodate interval-specific variation in the study data will severely bias parameter estimates; (2) in practice, our interval-specific discrete-geographic phylodynamic models can significantly improve the relative and absolute fit to empirical data; and (3) the increased realism of our interval-specific models provides qualitatively different inferences regarding key aspects of the COVID-19 pandemic-revealing significant temporal variation in global viral dispersal rates, viral dispersal routes, and the number of viral dispersal events between areas-and alters interpretations regarding the efficacy of intervention measures to mitigate the pandemic.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Humans , Phylogeny , Phylogeography , SARS-CoV-2/genetics
5.
J Econ Interact Coord ; 17(3): 801-825, 2022.
Article in English | MEDLINE | ID: covidwho-1877930

ABSTRACT

How will the novel coronavirus evolve? I study a simple epidemiological model, in which mutations may change the properties of the virus and its associated disease stochastically and antigenic drifts allow new variants to partially evade immunity. I show analytically that variants with higher infectiousness, longer disease duration, and shorter latent period prove to be fitter. "Smart" containment policies targeting symptomatic individuals may redirect the evolution of the virus, as they give an edge to variants with a longer incubation period and a higher share of asymptomatic infections. Reduced mortality, on the other hand, does not per se prove to be an evolutionary advantage. I then implement this model as an agent-based simulation model in order to explore its aggregate dynamics. Monte Carlo simulations show that a) containment policy design has an impact on both speed and direction of viral evolution, b) the virus may circulate in the population indefinitely, provided that containment efforts are too relaxed and the propensity of the virus to escape immunity is high enough, and crucially c) that it may not be possible to distinguish between a slowly and a rapidly evolving virus by looking only at short-term epidemiological outcomes. Thus, what looks like a successful mitigation strategy in the short run, may prove to have devastating long-run effects. These results suggest that optimal containment policy must take the propensity of the virus to mutate and escape immunity into account, strengthening the case for genetic and antigenic surveillance even in the early stages of an epidemic.

6.
Methods Mol Biol ; 2452: 33-43, 2022.
Article in English | MEDLINE | ID: covidwho-1844258

ABSTRACT

A newly emerged coronavirus, SARS-CoV-2, caused severe pneumonia outbreaks in China in December 2019 and has since spread to various countries around the world. Here, we describe genetic methods to trace the evolution route and probe the transmission dynamics of this virus.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/genetics , China/epidemiology , Disease Outbreaks , Humans , SARS-CoV-2/genetics
7.
Front Microbiol ; 12: 703933, 2021.
Article in English | MEDLINE | ID: covidwho-1359203

ABSTRACT

Identification of the genomic diversity and the phylodynamic profiles of prevalent variants is critical to understand the evolution and spread of SARS-CoV-2 variants. We performed whole-genome sequencing of 54 SARS-CoV-2 variants collected from COVID-19 patients in Kolkata, West Bengal during August-October 2020. Phylogeographic and phylodynamic analyses were performed using these 54 and other sequences from India and abroad that are available in the GISAID database. We estimated the clade dynamics of the Indian variants and compared the clade-specific mutations and the co-mutation patterns across states and union territories of India over the time course. Frequent mutations and co-mutations observed within the major clades across time periods do not show much overlap, indicating the emergence of newer mutations in the viral population prevailing in the country. Furthermore, we explored the possible association of specific mutations and co-mutations with the infection outcomes manifested in Indian patients.

8.
Hum Vaccin Immunother ; 17(8): 2437-2444, 2021 Aug 03.
Article in English | MEDLINE | ID: covidwho-1091300

ABSTRACT

Over the last decades, the use of phylogenetic methods in the study of emerging infectious diseases has gained considerable traction in public health. Particularly, the integration of phylogenetic analyses with the understanding of the pathogen dynamics at the population level has provided powerful tools for epidemiological surveillance systems. In the same way, the development of statistical methods and theory, as well as improvement of computational efficiency for evolutionary analysis, has expanded the use of these tools for vaccine and antiviral development. Today with the Coronavirus Disease 2019 (COVID-19), this seems to be critical. In this article, we discuss how the application of phylodynamic analysis can improve the understanding of current pandemic dynamics as well as the design, selection, and evaluation of vaccine candidates and antivirals.


Subject(s)
COVID-19 , Vaccines , Antiviral Agents/therapeutic use , Humans , Pandemics , Phylogeny , SARS-CoV-2
9.
J Gen Virol ; 102(3)2021 03.
Article in English | MEDLINE | ID: covidwho-1081877

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 has rapidly turned into a pandemic, infecting millions and causing 1 157 509 (as of 27 October 2020) deaths across the globe. In addition to studying the mode of transmission and evasion of host immune system, analysing the viral mutational landscape constitutes an area under active research. The latter is expected to impart knowledge on the emergence of different clades, subclades, viral protein functions and protein-protein and protein-RNA interactions during replication/transcription cycle of virus and response to host immune checkpoints. In this study, we have attempted to bring forth the viral genomic variants defining the major clade(s) as identified from samples collected from the state of Telangana, India. We further report a comprehensive draft of all genomic variations (including unique mutations) present in SARS-CoV-2 strain in the state of Telangana. Our results reveal the presence of two mutually exclusive subgroups defined by specific variants within the dominant clade present in the population. This work attempts to bridge the critical gap regarding the genomic landscape and associate mutations in SARS-CoV-2 from a highly infected southern region of India, which was lacking to date.


Subject(s)
COVID-19/virology , Genome, Viral , SARS-CoV-2/genetics , COVID-19/epidemiology , Genomics , Humans , India/epidemiology , Mutation , Phylogeny , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA , Viral Nonstructural Proteins/genetics , Viral Proteins/genetics
10.
Mol Biol Evol ; 38(4): 1608-1613, 2021 04 13.
Article in English | MEDLINE | ID: covidwho-900448

ABSTRACT

Since the start of the COVID-19 pandemic, an unprecedented number of genomic sequences of SARS-CoV-2 have been generated and shared with the scientific community. The unparalleled volume of available genetic data presents a unique opportunity to gain real-time insights into the virus transmission during the pandemic, but also a daunting computational hurdle if analyzed with gold-standard phylogeographic approaches. To tackle this practical limitation, we here describe and apply a rapid analytical pipeline to analyze the spatiotemporal dispersal history and dynamics of SARS-CoV-2 lineages. As a proof of concept, we focus on the Belgian epidemic, which has had one of the highest spatial densities of available SARS-CoV-2 genomes. Our pipeline has the potential to be quickly applied to other countries or regions, with key benefits in complementing epidemiological analyses in assessing the impact of intervention measures or their progressive easement.


Subject(s)
COVID-19/transmission , COVID-19/virology , Genome, Viral , Phylogeography , SARS-CoV-2/genetics , Belgium , COVID-19/epidemiology , Evolution, Molecular , Genomics , Humans , Likelihood Functions , Mutation , Patient Isolation , Phylogeny , Physical Distancing , Spatio-Temporal Analysis , Workflow
11.
Virus Evol ; 6(2): veaa061, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-722373

ABSTRACT

The ongoing SARS-CoV-2 outbreak marks the first time that large amounts of genome sequence data have been generated and made publicly available in near real time. Early analyses of these data revealed low sequence variation, a finding that is consistent with a recently emerging outbreak, but which raises the question of whether such data are sufficiently informative for phylogenetic inferences of evolutionary rates and time scales. The phylodynamic threshold is a key concept that refers to the point in time at which sufficient molecular evolutionary change has accumulated in available genome samples to obtain robust phylodynamic estimates. For example, before the phylodynamic threshold is reached, genomic variation is so low that even large amounts of genome sequences may be insufficient to estimate the virus's evolutionary rate and the time scale of an outbreak. We collected genome sequences of SARS-CoV-2 from public databases at eight different points in time and conducted a range of tests of temporal signal to determine if and when the phylodynamic threshold was reached, and the range of inferences that could be reliably drawn from these data. Our results indicate that by 2 February 2020, estimates of evolutionary rates and time scales had become possible. Analyses of subsequent data sets, that included between 47 and 122 genomes, converged at an evolutionary rate of about 1.1 × 10-3 subs/site/year and a time of origin of around late November 2019. Our study provides guidelines to assess the phylodynamic threshold and demonstrates that establishing this threshold constitutes a fundamental step for understanding the power and limitations of early data in outbreak genome surveillance.

12.
Viruses ; 12(8)2020 07 24.
Article in English | MEDLINE | ID: covidwho-670832

ABSTRACT

The aim of this study is the characterization and genomic tracing by phylogenetic analyses of 59 new SARS-CoV-2 Italian isolates obtained from patients attending clinical centres in North and Central Italy until the end of April 2020. All but one of the newly-characterized genomes belonged to the lineage B.1, the most frequently identified in European countries, including Italy. Only a single sequence was found to belong to lineage B. A mean of 6 nucleotide substitutions per viral genome was observed, without significant differences between synonymous and non-synonymous mutations, indicating genetic drift as a major source for virus evolution. tMRCA estimation confirmed the probable origin of the epidemic between the end of January and the beginning of February with a rapid increase in the number of infections between the end of February and mid-March. Since early February, an effective reproduction number (Re) greater than 1 was estimated, which then increased reaching the peak of 2.3 in early March, confirming the circulation of the virus before the first COVID-19 cases were documented. Continuous use of state-of-the-art methods for molecular surveillance is warranted to trace virus circulation and evolution and inform effective prevention and containment of future SARS-CoV-2 outbreaks.


Subject(s)
Betacoronavirus/classification , Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Bayes Theorem , Betacoronavirus/isolation & purification , COVID-19 , Epidemiological Monitoring , Genome, Viral , Humans , Italy/epidemiology , Likelihood Functions , Molecular Epidemiology , Molecular Typing , Mutation , Phylogeny , SARS-CoV-2 , Time Factors , Whole Genome Sequencing
13.
Emerg Microbes Infect ; 9(1): 1287-1299, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-595725

ABSTRACT

A newly emerged coronavirus, SARS-CoV-2, caused severe pneumonia outbreaks in China in December 2019 and has since spread to various countries around the world. To trace the evolution route and probe the transmission dynamics of this virus, we performed phylodynamic analysis of 247 high quality genomic sequences available in the GISAID platform as of 5 March 2020. Among them, four genetic clusters, defined as super-spreaders (SSs), could be identified and were found to be responsible for the major outbreaks that subsequently occurred in various countries. SS1 was widely disseminated in Asia and the US, and mainly responsible for outbreaks in the states of Washington and California as well as South Korea, whereas SS4 contributed to the pandemic in Europe. Using the signature mutations of each SS as markers, we further analysed 1539 genome sequences reported after 29 February 2020 and found that 90% of these genomes belonged to SSs, with SS4 being the most dominant. The relative degree of contribution of each SS to the pandemic in different continents was also depicted. Identification of these super-spreaders greatly facilitates development of new strategies to control the transmission of SARS-CoV-2.


Subject(s)
Betacoronavirus/genetics , Disease Outbreaks , Severe Acute Respiratory Syndrome/virology , Betacoronavirus/classification , Betacoronavirus/pathogenicity , China/epidemiology , Cluster Analysis , Databases, Genetic , Genome, Viral , Global Health , Humans , Mutation , Phylogeny , Risk Factors , SARS-CoV-2 , Sequence Alignment , Sequence Analysis , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/transmission , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL